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A new method is given for the calculation of integrals 

1 taia jt(krO PL (COS 01) d V Iux2 (k) =~n  f R,,(r~)R~(r2)-~¢ 

which are needed to evaluate orientation-dependent scattering factors for the overlap electron density between 
orbitals on stationary atoms at r,~ and r~, where r~ = r - r~, r 2 = r - r~ and R,~(rl) and R~(r2) are Slater-type 
radial functions. The integration may be reduced to the sum of an algebraic term and a one-dimensional 
numeric integration between 0 and R, where R = r~ - r,~. 

Introduction 

Let ~/,~(rl) = R,~(rl)Y ~ . (r 0 and ~jo(r2) = R~(rzi x 
Y ~ ( r 2 )  be orbitals on~sfationary atoms at r,~ and r~ 
respectively, where r 1 = r -  r,~ and r 2 = r -  r/3. The 
X-ray scattering from the overlap electron density 
~*,,(rl) ~,j~(r 2) may then be expressed (Rae, 1978) as 

oo 

X/~j~(k) = ~ i tgtm(k) Y~m(k), m = Mr3-  M,r 
l:lrnl (1) 

The scattering vector k has polar coordinates (k, 0 k, ~Pk) 
defined relative to a local axial system, where O k = 0 
corresponds to the direction R = r -- r Likewise, r~ /3 a" 
has polar coordinates (r1,01,~01) and r 2 has polar 
coordinates (r202,~02) relative to the same axes. 

R R YLd4o(rl), Y,~o(r2), Y~m(k) are spherical harmonics 
with the appropriate polar coordinates defined above. 
The evaluation of #tm(k) requires the calculation of 
axially symmetric integrals 

1 
ItLL2(k) -~-~ f R~(rl) '2"d' " = R~(r2)--~-, Jt(krl) Pt (COS 01) dV, 

(2) 

where k = 4n sin 0/2, 0 being the Bragg angle. The 
evaluation of these integrals for Slater-type orbitals is 
the subject of this paper. 

Theory 

We expand R~(r2)/~ about r,, as 
co 

R~(r2)/~= )_j, (2L' + 1)PL,(CosOI)UL,(r<,r>), (3) 
L'=O 

where Ut,(r<,r>) is a function of r< and r> and P~,(cos 
00 is a Legendre polynomial of order L' .  r< is the 
smaller and r> the greater of r~ and R. (3) enables us to 
say 

oo 
Ii~l.2(k) = f R~(rl)d%(krl) U~.(r<,r>)r~dr, (4) 

o 

from the orthogonality of Legendre polynomials, i.e. 

2L+,;y 
4~ PL (cos 00 P,, (cos 00 d cos 0, d~, = &,.L,, 

- I  0 

where &H., = 1 i fL  = L' ,  0 i fL  4= L' .  
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Coulson (1937) has shown how to evaluate the 
functions UL(r<,r>) where R~(r2) is a combination of 
Slater-type functions ~ - ~  exp (-~2 r2), where N~ > L~. 
We start with the expansion 

oo  

exp(--~2r2)/r2= Y (2L + 1)Pt.(cos O,)a~.o(r<,r>),(5 ) 
L = 0  

where 

a,.o(r<, r>) = ~zfz(y)g~(z), (6) 

y = ~2r< and z = ~zr>, f~(y) = (z~/2y)½IL+½(y) and 
g~(z) = (2/z~z)½ Kt.+½(z), where IL+½(y) and K~-+½(z) are 
modified spherical Bessel functions (Antosiewicz, 
1968). Definitions of f , (y )  and g,(z) and various re- 
cursion relations are given in the Appendix. 

Now 

Thus for r~ < R we have the functional form 
a i u,(rpR) but for r, > R we have a different functional 
form at. uXR, r,). Likewise we can say U~(r<, r>) has the 
functional ~ form U~(r,R) for r, < R and the functional 
form U~(R, r~) for r, > R. For computational purposes 
the integral ItL~(k ) can be rearranged so that 
IILL2(k) = VIIA.2(k) + Wu.L~(k ), where 

oo  

Vu.L~(k)= f Ro,(rl)~qt(krl) UL(R,r,)r]dr , (11) 
0 

and 

R 

Wt~2(k)= f Ra(rl)~jt(krl)tUL(rpR) 
0 

-- U~(R, rl)I r~ dr,. (12) 

and so 

exp (--if2 r2) = - -  
d exp(--~ r~) 

d(2 r2 

Wt~L,(k ) has to be calculated numerically but the 
evaluation of V~z,(k) has an exact algebraic form. We 
note that when R = 0, (i.e. both orbitals on the same 
atom) we need only consider (11) with L = 0. 

exp(--ff2rz)= Z (2L + 1)PL(cosO1)aL, l(r<,r>), 
L=o (7) 

where 

d 
aL, l(r<,r>) = ~ [~zfL(~z r<) gL(~z r>)l 

= --yA_l(y)gL(z) + zfL(.v)gL+,(Z) 
= zg~_~(z)fL(y)--yg~(z)fL+l(y ) (8) 

from relations detailed in the Appendix. 
We can now use the cosine rule, r 2 = r 2 + R 2 

- 2r~ R cos 01, and say 

~ - 1  exp(_~2 rz) = [rE + rE _ 2r<r> PI (cos 01)] 

× [ r ~  -3 exp(--flr2)],N~ > 1, 

so that 

oo  

r~V~ - l  exp(--~zr2) = Y. (2L + 1)PL(cos O,)aL,N~(r<,r>) , 
I=o (9) 

where 

a,.N,(r<,r>) = (rE + rZ)a,.N_2(r<,r>) 

2r<r> [LaL_l.N~_2(r<,r>) 
(2L + 1) 

+ (L + 1)aL+Lu_2(r<,r>)], (10) 

since 

PI(cos 01)PL(cos 01)= [LP L_,(cos 0,) + (L + 1) 
× P,+I(cosO,)]/(2L + 1). 

The evaluation of Vu.L2(k) 
Let us first consider the finiteness of the integral 

component 

l ;  
4~: ~"-lexp(--~lrl)r~2~- 'exp(--~2r2) ~_.__2 

x jt(krO PL (cos 01) d V 
GO 

= J r~l exp (--~, rl)jl(krl)aL,N(R,r,) dr,, 
0 

where M = N~ + L 2 + 1 and N = .N~ -- L b. As r I tends 
to zero, aL,N(R, r l )  varies as 1 /~  +1 andjt(kr,) varies as 
rl so that rfljt(krl)aL,N(R,r 0 varies as ~+l+,.2-,. .  

Now, the maximum value of L for a given l and L 2 is 
l + L,~ + L 2 (Rae, 1978), so that ~jt(krl)a,.,N(R, rl) 
varies as ~ . -Lo as r I tends to zero. Thus the function 
being integrated to evaluate VtLL2(k) is zero at the 
origin, since No~ > L~ for Slater-type functions. The 
function being integrated to evaluate Wt~.,.,(k ) goes to 
zero at both r, = 0 and r, = R. 

The evaluation of V~L (k) requires the evaluation of 
• 2 

integral components of the type 

c o  

Ai,,,,, = f r'~jt(krl) exp ( - ~  1 rOgn(~erl)r ~ dr ,  
0 

where l > 0, n > 0 and m > n - -  l - -  1. All these 
integrals are finite, as are integrals with m = n - l -  1. 
For integrals with m = n -- l - 1, the function being 
integrated has a finite non-zero value at r I = 0. These 
latter integrals are also needed for successful use of the 
recursion formulae which relate the A l,,,,, integrals. 
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o o  

Now ~lAlrnn = -- f r~+2jt(krOg,,(~2rOd exp (--~, rl) 
o 

= (m + 2)Arm_in 

•f djl (krO + rn~l+lexp(--¢lr,)[r, gn(~2rl)-~r l 
o 

+ rljt(krl) dg, dr--~ (~2 rl)] drt 

+ lim [r~+2jl(krl)gn(~2rO]. 
r l - - . 0  

From information given in the Appendix we can say 

~lAlmn = (m -- l --  n)Atm_,n + kA i_ lm  n - ~2Almn_l (13) 

+ lim [r7 '+ 2jt(kr,)g,,(£ z rO] 
r=--O 

and 

~lAlmn = (m + I + 1 --n)At,,,_l, , - k A l + l m  n - ~2Atmn_l 

+ lim [~+2jl(krl)g,,(~2rOl. (14) 
r l ~ 0  

When n = 1 = 0 (1 3) becomes 

(~1 + ~z)Aomo = maom-lo + k a - l m o  for m _ 0. (15) 

When n = 0, l = - 1  (14) becomes 

(~1 + ~z)A-lmo= mA-lm-lo-kAomo + 6mo/kff2f°r m > 0 ,  

(16) 

where Jmo = 1 if m = 0, 0 if m > 0. 
Now, for m = --1 we have (CRC Handbook of  

Chemistry and Physics, 1971) 

~2 kAo- lo = ~ sin kr I exp - (~1 + if2) rl dr1 
d r 1 
o 

= o9 = arctan [k/(~1 + ~z)l, (17) 

where 0 < 09 < n/2 so that cos 09 = (~1 + ~z)/D and 
sin o9 = kiD where D = [k 2 + (~1 + ~z) 2] 1/2. 

For the case when m = 0 (15) and (16) give 

and 

k~2Ao0 o = sin o9/D (18) 

k~ 2 A_ 1oo = cos w/D. 

For m > 0 (15) and (16) give 

A _ l m O  : m [ c o s  ( . D A  _ l m  - 1o - -  sin ogA O m  - ~ol/D 

and 

Aom 0 = m[sin ogA_lm_lo  + COS OgAom_Io]/D. 

(19) 

We can thus say 

~ 2 A o _ l o  = o9/k 

k~2A_lm o = m t  cos(m + 1) o9/D m+a 

¢2Aomo = m! sin(m + 1) og/kD m+l 

When k = 0 we obtain 

lim k~2A_lmo = m!/(¢l + ¢z) re+l, 
k-.O 

and 

(20) 

m_>0 (21) 

m > 0 .  (22) 

m > 0  (23) 

lim ~2Ao,,,o = (m + 1)!/(~ 1 + ~9 m+2, m >_--1. (24) 
k- .0  

We note that A lmn = 0 when k = 0 for the finite A lmn 
integrals with l > 0. We now use the recursion formula 

Jl+ l ( k r l ) -  (21 + 1) kr-----~ Jt(krl) -Jr - l (kr l )  

so that 

k A l + l m  n = (21+ 1)Arm_in - -  kt41_lm n. (25) 

If all the finite Alm_lO and h l _ l m  o a r e  known, (25) 
produces all Al+lm o with m > - l .  The remaining finite 
At+ lmo, m = --(1 + 1) and --(1 + 2), are obtained from 
(13) for the n = 0 case, i.e. 

(l-  m) At+ l m 0  = kalm+ 10 - ( ~ 1  + ~2)hl+ l m +  10" (26) 

(27) 

The recursion formula 

(2n + 1) 
gn+l(~2rl) - - - g . ( ~ 2  rl) + g,_ 1(~2 rl) 

~2 rl 

may now be used to create all finite A tin, from 

~2Almn+l = (2n + 1)A im_ in  + ~2Almn_l  

w i t h  A lmo = A Ira- 1 k n o w n .  

The evaluation of  Wu~2(k) 

The integral for WtLL2(k) has to be evaluated 
numerically. Ii~2(k) will have a magnitude less than 1.0 
but Vm. (k) and W/~ (k) will have magnitudes which 
depend ~n the magm~tudes of the ~2 values used to 
describe R#(r2). The greater the value of ~2 the greater 
the value of W~L_(k) and the greater the number of 
significant figures ~and data points required to obtain 
Iu~.(k) to the required accuracy. Functions of R#(r 2) 
for ~oonding electrons have reasonably small values of 
~2 if a single ( function is used. However multi-~ func- 
tions (Clementi & Roetti, 1974) include larger values of 
~2, and the use of multi-~ functions can increase 
Wu~(k) by a factor as large as 103 slowing con- 
vergence to the required accuracy. The advantage of 
reducing the numeric integral to a range 0 to R is then 
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largely lost. A compromise is the most efficient solution 
to the problem. UL(r<,r>) is described as U'L(r<,r>) 
+ U~' (r<, r>) where U'L(r <, r>) is the low-~ component 
and U~'(r<,r>) is the high-~ component. Thus lt, I~(k) 
= I~z  ~ (k) + I~z: (k) ,  where the low-~ component 
lb.z~(/0 is evaluated from (11), (12) but the high-( com- 
ponent is evaluated numerically as 

R+R' 
I~L:(k) = f Ra(rl)~2jt(krl)U[' (r<,r>)r~ drl,(28) 

o 

where R'  may be quite small, since U~'(r<,r>) has a 
rapid exponential decay when r 1 > R. 

A program has been written to evaluate the above 
integrals. It was found advantageous to cut the range 
of the numeric integrals into sixteenths to allow for 
different rates of convergence in different sections of 
the range. Convergence of the integration is worst near 
r I = 0 and initial trial calculations are found necessary 
to optimize the calculation. It should also be noted that, 
as the scattering vector k changes, only j t(kr) changes 
so that storage of R~(rl)~eU,(r<,r>)rZ~ values is 
advantageous. It should also be pointed out that the use 
of the recursion formulae in the Appendix for the 
evaluation of i t (x )  and fL0') has serious round-off 
errors as x or y approaches zero so that the series 
expansions given in the Appendix should be used for 
small x, y. Likewise, if we define Gn(z) = z"+tg,(z),  the 
recursion formula Gn+l(z) = (2n + 1)Gn(z) + zZG,_l(z), 
Go(z) = exp(-z),  z Z G l ( z )  = z exp(--z) is less prone to 
round-off error for small z. 

A P P E N D I X  

Modified spherical Bessel function 

fL(Y) = (zt/2Y) ½ IL +½(Y): 
sinh _ _ _ _  coshy 

fo(Y) - Y ,J - I (Y)  - 
Y Y 

fL+I(Y)-  (2L + l_______~)f~(.V) +A-I(Y)  
Y 

d 
Y -7- fLfY) = - - (L  + 1)fL(Y) + YA-,(Y) 

ely 

= LA(.v)  + y A  + 10') 

oo 2Z,+m( L + m)[(~.y2) m 

fL(Y)=YL Z m!(2L  + 2m + 1)! ' 
m = O  

L_>0.  

Modified spherical Bessel function 

gL(Z) = (2/lrz) ½ K L + ½(z): 

exp (--z) 
g o ( z )  = g _ l ( z )  = 

Z 

(2L + 1) 
g ,  + l ( z )  - - -  g , ( z )  + g , _  l ( z )  

Z 

d 
z d---z g L ( z ) = - - ( L  + 1)gL(z)-- zgL_,(Z) 

= LgL(z ) -- 2g L + 1(z) 

g. (z)  = g_~_,(z) = (-1) '  + ' [ f A z ) -  f_,_,(z)l. 

Spherical Bessel function jl(X): 

sin x cos x 
A ( x ) =  ~ ,  j_~(x)  = ~  

X X 

Jl+l(X) - (21 + 1_____ ) jl(X)--Jl-l(X) 
X 

d 
X dxJl(X ) =-(1  + 1)jl(x ) + XJl_l(X ) 

= O ' l ( X ) -  XJI+I(X), 

~ 21+m(l + m)l(--~x2) m 
j I ( X ) = X  1 

m=o m[(21+ 2m + 1)! ' 
l > 0 .  
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